Non-connected reductive groups
Chevie.Sscoset
Chevie.Semisimple.isisolated
Chevie.Semisimple.quasi_isolated_reps
PermGroups.Groups.centralizer
Chevie.Sscoset
β ModuleQuasi-Semisimple elements of non-connected reductive groups
We also use Coxeter cosets to represented non-connected reductive groups of the form π β Ο
where π
is a connected reductive group and Ο
is an algebraic automorphism of π
; more specifically to represent the coset π .Ο
. We may always choose Οβ π β
Ο
quasi-semisimple, which means that Ο
preserves a pair π β π
of a maximal torus and a Borel subgroup of π
, and further quasi-central, which means that the Weyl group of C_π (Ο)
is W^Ο
. Then Ο
defines an automorphism F_0
of the root datum (X(π ), Ξ¦, Y(π ), Ξ¦^β¨)
, thus a Coxeter coset. We refer to Digne-Michel2018 for details.
We have extended the functions for semi-simple elements to work with quasi-semisimple elements tΟβ π β
Ο
. Here, as in Digne-Michel2018, Ο
is a quasi-central automorphism uniquely defined by a diagram automorphism of (W,S)
, taking Ο
symplectic in type Aββ
.
Here are some examples:
julia> WF=rootdatum(:u,6)
uβ
We can see WF
as the coset GLββ
Ο
where Ο
is the composed of transpose, inverse and the longest element of W
.
julia> l=quasi_isolated_reps(WF)
4-element Vector{SemisimpleElement{Root1}}:
<1,1,1,1,1,1>
<ΞΆβ,ΞΆβ,ΞΆβ,ΞΆβΒ³,ΞΆβΒ³,ΞΆβΒ³>
<ΞΆβ,ΞΆβ,1,1,ΞΆβΒ³,ΞΆβΒ³>
<ΞΆβ,1,1,1,1,ΞΆβΒ³>
we define an element tΟβ π β
Ο
to be quasi-isolated if the Weyl group of C_π (tΟ)
is not in any proper parabolic subgroup of W^Ο
. This generalizes the definition for connected groups. The above shows the elements t
where tΟ
runs over representatives of quasi-isolated quasi-semisimple classes of π β
Ο
. The given representatives have been chosen Ο
-stable.
julia> centralizer.(Ref(WF),l)
4-element Vector{ExtendedCox{Perm{Int16}, FiniteCoxeterGroup{Perm{Int16},Rational{Int64}}}}:
Cββββββ
Β²Aββββββ
(AβAβ)ββββΓAββββ
BβΞ¦β
in the above example, the groups C_π (tΟ)
are computed and displayed as extended Coxeter groups (following the same convention as for centralisers in connected reductive groups).
We define an element tΟβ π β
Ο
to be isolated if the Weyl group of C_π (tΟ)β°
is not in any proper parabolic subgroup of W^Ο
. This generalizes the definition for connected groups.
julia> isisolated.(Ref(WF),l)
4-element BitVector:
1
1
1
0
PermGroups.Groups.centralizer
β Methodcentralizer(WF::Spets,t::SemisimpleElement{Root1})
WF
should be a Coxeter coset representing an algebraic coset π β
Ο
, where π
is a connected reductive group (represented by 'W:=Group(WF)'), and Ο
is a quasi-central automorphism of π
defined by WF
. The element t
should be a semisimple element of π
. The function returns an extended reflection group describing C_π (tΟ)
, with the reflection group part representing C_π β°(tΟ)
, and the diagram automorphism part being those induced by C_π (tΟ)/C_π (tΟ)β°
on C_π (tΟ)β°
.
julia> WF=rootdatum(:u,6)
uβ
julia> s=ss(Group(WF),[1//4,0,0,0,0,3//4])
SemisimpleElement{Root1}: <ΞΆβ,1,1,1,1,ΞΆβΒ³>
julia> centralizer(WF,s)
BβΞ¦β
julia> centralizer(WF,one(s))
Cββββββ
Chevie.Semisimple.quasi_isolated_reps
β Methodquasi_isolated_reps(WF::Spets,p=0)
WF
should be a Coxeter coset representing an algebraic coset π β
Ο
, where π
is a connected reductive group (represented by W=Group(WF)
), and Ο
is a quasi-central automorphism of π
defined by WF
. The function returns a list of semisimple elements of π
such that tΟ
, when t
runs over this list, are representatives of the conjugacy classes of quasi-isolated quasisemisimple elements of π β
Ο
(an element tΟβ π β
Ο
is quasi-isolated if the Weyl group of C_π (tΟ)
is not in any proper parabolic subgroup of W^Ο
). If a second argument p
is given, it lists only those representatives which exist in characteristic p
.
julia> WF=rootdatum("2E6sc")
Β²Eβsc
julia> quasi_isolated_reps(WF)
5-element Vector{SemisimpleElement{Root1}}:
<1,1,1,1,1,1>
<1,-1,ΞΆβ,1,ΞΆβ,1>
<1,1,1,-1,1,1>
<1,ΞΆβΒ²,1,ΞΆβ,1,1>
<1,ΞΆβΒ³,1,-1,1,1>
julia> quasi_isolated_reps(WF,2)
2-element Vector{SemisimpleElement{Root1}}:
<1,1,1,1,1,1>
<1,ΞΆβΒ²,1,ΞΆβ,1,1>
julia> quasi_isolated_reps(WF,3)
4-element Vector{SemisimpleElement{Root1}}:
<1,1,1,1,1,1>
<1,-1,ΞΆβ,1,ΞΆβ,1>
<1,1,1,-1,1,1>
<1,ΞΆβΒ³,1,-1,1,1>
Chevie.Semisimple.isisolated
β Methodisisolated(WF::Spets,t::SemisimpleElement{Root1})
WF
should be a Coxeter coset representing an algebraic coset π β
Ο
, where π
is a connected reductive group (represented by W=Group(WF)
), and Ο
is a quasi-central automorphism of π
defined by WF
. The element t
should be a semisimple element of π
. The function returns a boolean describing whether tΟ
is isolated, that is whether the Weyl group of C_π (tΟ)β°
is not in any proper parabolic subgroup of W^Ο
.
julia> WF=rootdatum(:u,6)
uβ
julia> l=quasi_isolated_reps(WF)
4-element Vector{SemisimpleElement{Root1}}:
<1,1,1,1,1,1>
<ΞΆβ,ΞΆβ,ΞΆβ,ΞΆβΒ³,ΞΆβΒ³,ΞΆβΒ³>
<ΞΆβ,ΞΆβ,1,1,ΞΆβΒ³,ΞΆβΒ³>
<ΞΆβ,1,1,1,1,ΞΆβΒ³>
julia> isisolated.(Ref(WF),l)
4-element BitVector:
1
1
1
0