• Abb89 J. A. Abbott.
    On the Factorization of Polynomials over Algebraic Fields.
    PhD thesis, School of Mathematical Sciences, University of Bath, September 1989.
  • AL82 D. Alvis and G. Lusztig.
    The representations and generic degrees of the Hecke algebra of type H4.
    J. reine angew. Math., 336:201--212, 1982.
    Correction: ibid. 449, 217--218 (1994).
  • Alv87 D. Alvis.
    The left cells of the Coxeter group of type H4.
    J. Algebra, 107:160--168, 1987.
  • AMW82 David G. Arrell, Sanjiv Manrai, and Michael F. Worboys.
    A procedure for obtaining simplified defining relations for a subgroup.
    In Campbell and Robertson grpsstandrews81, pages 155--159.
  • AR84 David G. Arrell and Edmund F. Robertson.
    A modified Todd-Coxeter algorithm.
    In Atkinson durham82, pages 27--32.
  • Art68 Emil Artin.
    Galoissche Theorie.
    Verlag Harri Deutsch, Frankfurt/Main, 1968.
  • durham82 Michael D. Atkinson, editor.
    Computational Group Theory, Proceedings LMS Symposium on Computational Group Theory, Durham 1982. Academic Press, 1984.
  • xmodAW1 M. Alp and C. D. Wensley.
    Enumeration of cat1-groups of low order.
    U.W.Bangor Preprint, 96.05:1--17, 1997.
  • Bau91 Ulrich Baum.
    Existenz und effiziente Konstruktion schneller Fouriertransformationen überauflösbarer Gruppen.
    Dissertation, Rheinische Friedrich Wilhelm Universität Bonn, Bonn, Germany, 1991.
  • BBNWZ78 Harold Brown, Rolf Bülow, Joachim Neubüser, Hans Wondratschek, and Hans Zassenhaus.
    Crystallographic Groups of Four-Dimensional Space.
    John Wiley, New York, 1978.
  • BC72 C. T. Benson and C. W. Curtis.
    On the degrees and rationality of certain characters of finite Chevalley groups.
    Trans. Amer. Math. Soc., 165:251--273, 1972.
  • BC76 Michael J. Beetham and Colin M. Campbell.
    A note on the Todd-Coxeter coset enumeration algorithm.
    Proc. Edinburgh Math. Soc. (2), 20:73--79, 1976.
  • BC89 Richard P. Brent and Graeme L. Cohen.
    A new lower bound for odd perfect numbers.
    Math. Comput., 53:431--437, 1989.
  • BC92 Wieb Bosma and John J. Cannon.
    Handbook of Cayley functions.
    Technical report, Department of Pure Mathematics, University of Sydney, Sydney, Australia, 1992.
  • BCFS91 Lazlo Babai, Gene Cooperman, Larry Finkelstein, and 'Akos Seress.
    Nearly linear time algorithms for permutation groups with a small base.
    In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC'91), Bonn 1991, pages 200--209. ACM Press, 1991.
  • BCMb G. Baumslag, F.B. Cannonito, and C.F. Miller III.
    Computable algebra and group embeddings.
    J. Algebra, 69:186--212, 1981.
  • BCMa G. Baumslag, F.B. Cannonito, and C.F. Miller III.
    Some recognizable properties of solvable groups.
    Math. Z., 178:289--295, 1981.
  • BCN89 A.E. Brouwer, A.M. Cohen, and A. Neumaier.
    Distance-Regular Graphs.
    Spinger, Berlin and New York, 1989.
  • BDM01 D. Bessis, F. Digne, and J. Michel.
    Springer theory in braid groups and the Birman-Ko-Lee monoid.
    Pacific J. Math., 205:287--309, 2002.
  • Ben76 M. Benard.
    Schur indices and splitting fields of the unitary reflection groups.
    J. Algebra, 38:318--342, 1976.
  • Ber76 T. R. Berger.
    Characters and derived length in groups of odd order.
    J. Algebra, 39:199--207, 1976.
  • B01 D. Bessis.
    Zariski theorems and diagrams for braid groups.
    Invent. Math., 145:487--507, 2001.
  • xmodBH1 R. Brown and P. J. Higgins.
    On the connection between the second relative homotopy group and some related spaces.
    Proc. London Math. Soc., 36:193--212, 1978.
  • BH05 C. Bonnafé and C. Hohlweg.
    Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups.
    Ann. Inst. Four., 33:2315 -- 2337, 2005.
  • Bis89 Thomas Bischops.
    Collectoren im Programmsystem GAP.
    Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1989.
  • BM83 Gregory Butler and John McKay.
    The transitive groups of degree up to 11.
    Communications in Algebra, 11:863--911, 1983.
  • BM93 M. Broué and G. Malle.
    Zyklotomische Heckealgebren.
    Astérisque, 212:119--189, 1993.
  • BM03 David Bessis and Jean Michel.
    Explicit presentations for exceptional braid groups.
    Experimental mathematics, 13:257--266, 2004.
  • BMM93 M. Broué, G. Malle, and J. Michel.
    Generic blocks of finite reductive groups.
    Astérisque, 212:7--92, 1993.
  • BMM99 M. Broué, G. Malle, and J. Michel.
    Towards spetses i.
    Transformation Groups, 4:157--218, 1999.
  • BMM14 M. Broué, G. Malle, and J. Michel.
    Split spetses for primitive reflection groups.
    Astérisque, 359:1--146, 2014.
  • BMR98 M. Broué, G. Malle, and R. Rouquier.
    Complex reflection groups, braid groups, hecke algebras.
    J. Reine Angew. Math., 500:127--190, 1998.
  • Bon05 C. Bonnafé.
    Quasi-isolated elements in reductive groups 1.
    Communications in Algebra, 33:2315 -- 2337, 2005.
  • Bou68 N. Bourbaki.
    Groupes et algèbres de Lie, Ch. 4--6.
    Hermann, Paris, 1968.
    Masson, Paris: 1981.
  • Bra89 R. J. Bradford.
    On the computation of integral bases and defects of integrity.
    PhD thesis, School of Mathematical Sciences, University of Bath, 1989.
  • Bri71 E. Brieskorn.
    Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe.
    Invent. Math., 12:57--61, 1971.
  • BS72 E. Brieskorn and K. Saito.
    Artin-Gruppen und Coxeter-Gruppen.
    Invent. Math., 17:245--271, 1972.
  • BTW93 Bernhard Beauzamy, Vilmar Trevisan, and Paul S. Wang.
    Polynomial factorization: Sharp bounds, Efficient algorithms.
    J. Symbolic Computation, 15:393--413, 1993.
  • Bur55 W[illiam S.] Burnside.
    Theory of Groups of Finite Order.
    Dover Publications, New York, 1955.
    Unabridged republication of the second edition, published in 1911.
  • But82 Gregory Butler.
    Computing in permutation and matrix groups II: Backtrack algorithm.
    Math. Comput., 39:671--680, 1982.
  • But85a Gregory Butler.
    Effective computation with group homomorphisms.
    J. Symbolic Computation, 1:143--157, 1985.
  • But93 Gregory Butler.
    The transitive groups of degree fourteen and fifteen.
    J. Symbolic Computation, pages 413--422, 1993.
  • xmodBW1 R. Brown and C. D. Wensley.
    On finite induced crossed modules, and the homotopy 2-type of mapping cones.
    Theory and Applications of Categories, 1:54--71, 1995.
  • xmodBW2 R. Brown and C. D. Wensley.
    On the computation of induced crossed modules.
    Theory and Applications of Categories, 2:3--16, 1996.
  • Luminy94 Marc Cabanes, editor.
    Finite Reductive Groups, Related Structures and Representations, volume 141 of Progress in Mathematics. Birkhäuser, Basel, 1996.
  • Cam71 Harvey A. Campbell.
    An extension of coset enumeration.
    M. Sc. thesis, McGill University, Montreal, Canada, 1971.
  • Can73 John J. Cannon.
    Construction of defining relators for finite groups.
    Discrete Math., pages 105--129, 1973.
  • Car72 R. W. Carter.
    Conjugacy classes in the Weyl group.
    Compositio Math., 25:1--59, 1972.
  • Car72b R. W. Carter.
    Simple groups of Lie type.
    Wiley, New York, 1972.
  • Car85 R. W. Carter.
    Finite groups of Lie type: Conjugacy classes and complex characters.
    Wiley, New York, 1985.
  • Car86 R. W. Carter.
    Representation theory of the 0--Hecke algebra.
    J. Algebra, 104:89--103, 1986.
  • CB93 M. Clausen and U. Baum.
    Fast Fourier Transforms.
    BI-Wissenschaftsverlag, Mannheim, 1993.
  • CCN85 John H. Conway, Robert T. Curtis, Simon P. Norton, Richard A. Parker, and Robert A. Wilson.
    Atlas of finite groups.
    Oxford University Press, 1985.
  • Cel92 Frank Celler.
    Kohomologie und Normalisatoren in GAP.
    Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1992.
  • C73 D. Cheniot.
    Une démonstration du théorème de Zariski sur les sections hyperplanes d'une hypersurface projective et du théorème de Van Kampen sur le groupe fondamental du complémentaire d'une courbe projective plane.
    Compositio Math., 27:141--158, 1973.
  • CNW90 Frank Celler, Joachim Neubüser, and Charles R. B. Wright.
    Some remarks on the computation of complements and normalizers in soluble groups.
    Acta Applicandae Mathematicae, 21:57--76, 1990.
  • Coh93 Henri Cohen.
    A Course in Computational Algebraic Number Theory, volume 138 of Graduate Texts in Mathematics.
    Spinger, Berlin and New York, 1993.
  • Con90a Sam B. Conlon.
    Calculating characters of p-groups.
    J. Symbolic Computation, 9(5 \& 6):535--550, 1990.
  • Con90b Sam B. Conlon.
    Computing modular and projective character degrees of soluble groups.
    J. Symbolic Computation, 9(5 \& 6):551--570, 1990.
  • grpsstandrews81 Colin M. Campbell and Edmund F. Robertson, editors.
    Groups-St.Andrews 1981, Proceedings of a conference, St.Andrews 1981, volume 71 of London Math. Soc. Lecture Note Series. Cambridge University Press, 1982.
  • CR87 C. W. Curtis and I. Reiner.
    Methods of representation theory, vol. I, II.
    John Wiley, New York, 1981/1987.
  • CT65 James W. Cooley and John W. Tukey.
    An algorithm for the machine computation of complex fourier series.
    Mathematics of Computation, 19:297--301, 1965.
  • Del72 P. Deligne.
    Les immeubles des groupes de tresses généralisés.
    Invent. Math., 17:273--302, 1972.
  • Deo89 V.V. Deodhar.
    A note on subgroups generated by reflections in Coxeter groups.
    Arch. Math., 53:543--546, 1989.
  • dg99 P. Diaconis and R. Graham.
    The graph of generating sets of an abelian group.
    Colloq. Math., 80:31--38, 1999.
  • Dix67 John D. Dixon.
    High speed computations of group characters.
    Num. Math., 10:446--450, 1967.
  • ss F. Digne and J. Michel.
    Quasi-semisimple elements.
    Proc. LMS, 116:1301--1328, 2018.
  • DePa99 P. Dehornoy and L. Paris.
    Gaussian groups and garside groups, two generalizations of artin groups.
    Proc. LMS, 79:569--604, 1999.
  • Dre69 Andreas [W. M.] Dress.
    A characterization of solvable groups.
    Math. Z., 110:213--217, 1969.
  • DuC91 F. DuCloux.
    Coxeter Version 1.0.
    Université de Lyon, France, 1991.
  • Dye90 M. Dyer.
    Reflection subgroups of Coxeter systems.
    J. Algebra, 135:57--73, 1990.
  • ECHLPT92 D.B.A. Epstein, J.W. Cannon, D.F. Holt, S. Levy, M.S. Paterson, and W.P. Thurston.
    Word Processing and Group Theory.
    Jones and Bartlett, 1992.
  • Egn97 S. Egner.
    Zur Algorithmischen Zerlegungstheorie linearer Transformationen mit Symmetrie.
    PhD thesis, Universität Karlsruhe, 1997.
  • egn97b Bettina Eick, Franz G"ahler, and Werner Nickel.
    Computing Maximal Subgroups and Wyckoff Positions of Space Groups.
    Acta Cryst A, 1997.
  • xmodE1 G. Ellis.
    Crossed modules and their higher dimensional analogues.
    PhD thesis, University of Wales, Bangor, 1984.
  • ER82 Douglas F. Elliott and K. Ramamohan Rao.
    Fast Transforms --- Algorithms, Analyses, Applications.
    Academic Press, 1982.
  • fragon03 N. Franco and J. Gonzalez-Meneses.
    Conjugacy problem for braid groups and garside groups.
    J. Algebra, 266:112--132, 2003.
  • FJNT95 Volkmar Felsch, David L. Johnson, Joachim Neubüser, and Sergey V. Tsaranov.
    The structure of certain Coxeter groups.
    In Colin M. Campbell, Thaddeus C. Hurley, Edmund F. Robertson, Sean J. Tobin, and James J. Ward, editors, Groups '93 Galway / St.Andrews, Galway 1993, Volume 1, volume 211 of London Math. Soc. Lecture Note Series, pages 177--190. Cambridge University Press, 1995.
  • Fra82 James S. Frame.
    Recursive computation of tensor power components.
    Bayreuther Math. Schr., 10:153--159, 1982.
  • FS84 Volkmar Felsch and Günter Sandlöbes.
    An interactive program for computing subgroups.
    In Atkinson durham82, pages 137--143.
  • Gar69 F. A. Garside.
    The braid groups and other groups.
    Quart. J. Math. Oxford, 2nd Ser, 20:235--254, 1969.
  • Gec94 M. Geck.
    On the character values of Iwahori-Hecke algebras of exceptional type.
    Proc. London Math. Soc., 68:51--76, 1994.
  • Gec95 M. Geck.
    Beiträge zur Darstellungstheorie von Iwahori--Hecke Algebren, volume 11 of Aachener Beiträge zur Mathematik.
    Verlag der Augustinus Buchhandlung, Aachen, 1995.
  • gg12 Iain G. Gordon and Stephen Griffeth.
    Catalan numbers for complex reflection groups.
    American Journal of Mathematics, 134:1491--1502, 2012.
  • gebgon10 V. Gebhardt and J. Gonzalez-Meneses.
    Solving the conjugacy problem in Garside groups by cyclic sliding.
    J. Symbolic Computation, 45:629--656, 2010.
  • GH14 M. Geck and A. Halls.
    Kazhdan-Lusztig cells in type E8.
    Math. of computation , 84:3029--3049, 2015.
  • Chv96 M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer.
    CHEVIE-A system for computing and processing generic character tables for finite groups of lie type.
    AAECC, 7:175--210, 1996.
  • xmodG1 N. D. Gilbert.
    Derivations, automorphisms and crossed modules.
    Comm. in Algebra, 18:2703--2734, 1990.
  • GK96 M. Geck and S. Kim.
    Bases for the Bruhat--Chevalley order on all finite Coxeter groups.
    Preprint, 1996.
  • GKP90 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik.
    Concrete Mathematics.
    Addison-Wesley, 1990.
  • Gla87 Stephan P. Glasby.
    Computational Approaches to the Theory of Finite Soluble Groups.
    Phd thesis, Department of Pure Mathematics, University of Sydney, Sydney, Australia, 1987.
  • GM97 M. Geck and J. Michel.
    On ``good'' elements in the conjugacy classes of finite Coxeter groups and their eigenvalues on the irreducible representations of Iwahori-Hecke algebras.
    Proc. London Math. Soc., 74:275--305, 1997.
  • GP93 M. Geck and G. Pfeiffer.
    On the irreducible characters of Hecke algebras.
    Advances in Math., 102:79--94, 1993.
  • GS90 Stephan P. Glasby and Michael C. Slattery.
    Computing intersections and normalizers in soluble groups.
    J. Symbolic Computation, 9:637--651, 1990.
  • Hah83 Theo Hahn, editor.
    International Tables for Crystallography, Volume A, Space-group Symmetry.
    Reidel, Dordrecht, Boston, 1983.
  • Hav69 George Havas.
    Symbolic and algebraic calculation.
    Basser Computing Dept., Technical Report 89, Basser Department of Computer Science, University of Sydney, Sydney, Australia, 1969.
  • Hav74b George Havas.
    A Reidemeister-Schreier program.
    In Michael F. Newman, editor, Proceedings of the Second International Conference on the Theory of Groups, Canberra, 1973, volume 372 of Lecture Notes in Math., pages 347--356. Springer, Berlin, 1974.
  • EHR91 D.F. Holt, D.B.A. Epstein, and S. Rees.
    The use of knuth-bendix methods to solve the word problem in automatic groups.
    J. Symbolic Computation, 12:397--414, 1991.
  • HIO89 Trevor O. Hawkes, I. Martin Isaacs, and M. Özaydin.
    On the Möbius function of a finite group.
    Rocky Mountain J. Math., 19:1003--1034, 1989.
  • HKRR84 George Havas, Peter E. Kenne, James S. Richardson, and Edmund F. Robertson.
    A Tietze transformation program.
    In Atkinson durham82, pages 67--71.
  • HN80 George Havas and Michael F. Newman.
    Application of computers to questions like those of Burnside.
    In Jens L. Mennicke, editor, Burnside groups, Proceedings of a workshop, Bielefeld, Germany, 1977, volume 806 of Lecture Notes in Math., pages 211--230. Springer, Berlin, 1980.
  • Holt94 Derek F. Holt.
    The warwick automatic groups software.
    In Proceedings of DIMACS Conference on Computational Group Theory, Rutgers, March 1994., To appear.
  • Howie95 John M. Howie.
    Fundamentals of Semigroup Theory, volume 12 of London Mathematical Society Monographs New Series.
    Oxford University Press, 1995.
  • HP89 Derek F. Holt and Wilhelm Plesken.
    Perfect Groups.
    Oxford Math. Monographs. Clarendon, Oxford, 1989.
  • HR94 Derek F. Holt and Sarah Rees.
    Testing modules for irreducibility.
    J. Austral. Math. Soc. Ser. A, 57:1--16, 1994.
  • H05 Derek F. Holt, B. Eick and E. O'Brien.
    Handbook of computational group theory
    Chapman and Hall, 2005.
  • HS64 Marshall Hall, Jr. and James K. Senior.
    The Groups of Order 2n (n ≤ 6).
    The Macmillan Company, New York, 1964.
  • HSS01 J. Hubbard, D. Schleicher, and S. Sutherland.
    How to find all roots of complex polynomials by Newton's method.
    Invent. Math., 146:1--33, 2001.
  • Hu85 Hugues.
    On decompositions in complex imprimitive reflection groups.
    Indagationes, 88:207--219, 1985.
  • Hum90 J. E. Humphreys.
    Reflections groups and Coxeter groups, volume 29 of Cambridge studies in advanced Math.
    Cambridge University Press, 1990.
  • Hup67 Bertram Huppert.
    Endliche Gruppen I, volume 134 of Grundlehren Math. Wiss.
    Springer, Berlin, 1967.
  • JLPW95 Christoph Jansen, Klaus Lux, Richard A. Parker, and Robert A. Wilson.
    An Atlas of Brauer Characters, volume 11 of London Math. Soc. Monographs.
    Clarendon, Oxford, 1995.
  • Kac V. Kac.
    Infinite dimensional Lie algebras.
    Cambridge University Press, 1982.
  • Ker91 Adalbert Kerber.
    Algebraic Combinatorics Via Finite Group Actions.
    BI-Wissenschaftsverlag, Mannheim, 1991.
  • KL79 D. A. Kazhdan and G. Lusztig.
    Representations of Coxeter groups and Hecke algebras.
    Invent. Math., 53:165--184, 1979.
  • Lallement79 Gérard Lallement.
    Semigroups and Combinatorial Applications.
    John Wiley, New York, 1979.
  • Lau82 Reinhard Laue.
    Zur Konstruktion und Klassifikation endlicher auflösbarer Gruppen, volume 9 of Bayreuther Math. Schr.
    Universität Bayreuth, Bayreuth, Germany, 1982.
  • LeC86 P. LeChenadec.
    Canonical Forms in Finitely Presented Algebras.
    London Pitman and New York, Wiley, 1986.
  • Sog89 Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany.
    SOGOS - A Program System for Handling Subgroups of Finite Soluble Groups, version 5.0, User's reference manual, 1989.
  • Spa89 Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany.
    SPAS - Subgroup Presentation Algorithms System, version 2.5, User's reference manual, 1989.
  • Leo80 Jeffrey S. Leon.
    On an algorithm for finding a base and a strong generating set for a group given by generating permutations.
    Math. Comput., 35:941--974, 1980.
  • Leo91 S. Jeffrey Leon.
    Permutation Group Algorithms Based on Partitions, I: Theory and Algorithms.
    Journal of Symbolic Computation, 12:533--583, 1991.
  • LS90 Charles R. Leedham-Green and Leonard H. Soicher.
    Collection from the left and other strategies.
    J. Symbolic Computation, 9(5 \& 6):665--675, 1990.
  • Lin93 Steve Linton.
    Vector Enumeration Programs, version 3, 1993.
  • LLL82 A. K. Lenstra, H. W. Lenstra, and L. Lovász.
    Factoring polynomials with rational coefficients.
    Math. Ann., 261:513--534, 1982.
  • LNS84 Reinhard Laue, Joachim Neubüser, and Ulrich Schoenwaelder.
    Algorithms for finite soluble groups and the SOGOS system.
    In Atkinson durham82, pages 105--135.
  • Lo E. Lo.
    A Polycyclic Quotient Algorithm.
    PhD thesis, Rutgers University, 1996.
  • xmodL1 J. L. Loday.
    Spaces with finitely many non-trivial homotopy groups.
    J. App. Algebra, 24:179--202, 1982.
  • LP91 Klaus Lux and Herbert Pahlings.
    Computational aspects of representation theory of finite groups.
    In G. O. Michler and C. R. Ringel, editors, Representation theory of finite groups and finite--dimensional algebras, volume 95 of Progress in Mathematics, pages 37--64. Birkhäuser, Basel, 1991.
  • LPRR2 S. A. Linton, G. Pfeiffer, E. F. Robertson, and N. Ru\v skuc.
    Computing transformation semigroups.
    in preparation.
  • LPRR1 S. A. Linton, G. Pfeiffer, E. F. Robertson, and N. Ru\v skuc.
    Groups and actions in transformation semigroups.
    Math. Z., 1997.
    to appear.
  • LS99 G. I. Lehrer and T. Springer.
    Reflection multiplicities and reflection subquotients of unitary reflection groups, i.
    In geometric group theory down under, pages 181--193, 1999.
  • Lus76 G. Lusztig.
    Coxeter orbits and eigenspaces of Frobenius.
    Invent. Math., 34:101--159, 1976.
  • Lus77 G. Lusztig.
    Irreducible representations of finite classical groups.
    Invent. Math. 43:125--175, 1977.
  • Lus81 G. Lusztig.
    On a theorem of Benson and Curtis.
    J. Algebra, 71:490--498, 1981.
  • Lus83 G. Lusztig.
    Left cells in Weyl groups.
    In Lie groups representations, volume 1024, pages 99--111. Springer, 1983.
  • Lus85 G. Lusztig.
    Characters of reductive groups over a finite field, volume 107 of Annals of Math. Studies.
    Princeton University Press, 1985.
  • Lus2004 G. Lusztig.
    Character sheaves in disconnected groups.
    In Representation theory, volume 8, pages 72--124.
  • LuSp1985 G. Lusztig and N.Spaltenstein
    On the generalized Springer correspondence for classical groups.
    In Adv. Stud. Pure Math., volume 6, pages 289--316.
  • Mal92 Henrique S. Malvar.
    Signal Processing with Lapped Transforms.
    Artech House, 1992.
  • Mal95 Gunter Malle.
    Unipotente Grade imprimitiver komplexer Spiegelungsgruppen.
    J. Algebra 177:768--826, 1995.
  • Mal96 Gunter Malle.
    Degrés relatifs des algèbres cyclotomiques associées aux groupes de réflexions complexes de dimension deux.
    In Cabanes Luminy94.
  • Mal00 Gunter Malle.
    On the generic degrees of cyclotomic algebras.
    Representation theory, 4:342--369, 2000.
  • Nau90 B.D. McKay.
    nauty user's guide (version 1.5), Technical report TR-CS-90-02.
    Australian National University, Computer Science Department, ANU, 1990.
  • McL77 D. H. McLain.
    An algorithm for determining defining relations of a subgroup.
    Glasgow Math. J., 18:51--56, 1977.
  • Mer96 A. Mertins.
    Signaltheorie.
    Teubner Verlag, 1996.
  • Min93 T. Minkwitz.
    Algorithmensynthese f{ür lineare Systeme mit Symmetrie}.
    PhD thesis, Universität Karlsruhe, 1993.
  • Min95 T. Minkwitz.
    Algorithms Explained by Symmetry.
    Lecture Notes on Computer Science, 900:157--167, 1995.
  • Min96 T. Minkwitz.
    Extension of Irreducible Representations.
    Applicable Algebra in Engineering, Communication and Computing, 7:391--399, 1996.
  • MM98 Gunter Malle and Andrew Mathas.
    Symmetric cyclotomic Hecke algebras.
    J. Algebra, 205(1):275--293, 1998.
  • MM10 Gunter Malle and Jean Michel.
    Constructing representations of hecke algebras for complex reflection groups.
    LMS J. Comput. Math., 13:426--450, 2010.
  • MT11 Gunter Malle and Donna Testerman.
    Linear algebraic groups and finite groups of Lie type.
    Cambridge studies in advanced Math. , 133, 2011.
  • MarinMichel10 Ivan Marin and Jean Michel.
    Automorphisms of complex reflection groups.
    Representation theory, 14:747--788, 2010.
  • Mni92 Jürgen Mnich.
    Untergruppenverbände und auflösbare Gruppen in GAP.
    Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1992.
  • Mon85 Peter L. Montgomery.
    Modular multiplication without trial division.
    Math. Comput., 44:519--521, 1985.
  • MR03 Gunter Malle and Raphaël Rouquier.
    Familles de caractères de groupes de réflexions complexes.
    Representation theory, 7:610--640, 2003.
  • MS85 John McKay and Leonard H. Soicher.
    Computing Galois groups over the rationals.
    J. Number Theory, 20:273--281, 1985.
  • Mur58 Francis D. Murnaghan.
    The orthogonal and symplectic groups.
    Communications Series A 13, Dublin Inst. Adv. Studies, 1958.
  • Mur95 Murphy.
    The representations of Hecke algebras of type A.
    J. Algebra 173 (1995), 97--121
  • Neb95 Gabriele Nebe.
    Endliche rationale Matrixgruppen vom Grad 24, volume 12 of Aachener Beiträge zur Mathematik.
    Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, 1995.
    Dissertation, Lehrstuhl B für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1995.
  • Neu67 Joachim Neubüser.
    Die Untergruppenverbände der Gruppen der Ordnungen ≤ 100 mit Ausnahme der Ordnungen 64 und 96.
    Habilitationsschrift, Universität Kiel, Kiel, Germany, 1967.
  • Neu82 Joachim Neubüser.
    An elementary introduction to coset table methods in computational group theory.
    In Campbell and Robertson grpsstandrews81, pages 1--45.
  • New77 Michael F. Newman.
    Determination of groups of prime-power order.
    In R. A. Bryce, J. Cossey, and Michael F. Newman, editors, Group theory, Proc. Miniconf., Austral. Nat. Univ., Canberra, 1975, volume 573 of Lecture Notes in Math., pages 73--84. Springer, Berlin, 1977.
  • NO89 Michael F. Newman and Eamonn A. O\accent19Brien.
    A CAYLEY library for the groups of order dividing 128.
    In Group Theory, Proceedings of the 1987 Singapore Conference, Singapore 1987, pages 437--442. Walter de Gruyter, Berlin, New York, 1989.
  • NO96 Michael F. Newman and Eamonn A. O\accent19Brien.
    Application of computers to questions like those of Burnside, II.
    Internat. J. Algebra Comput., 6:593--605, 1996.
  • xmodN2 K. J. Norrie.
    Crossed modules and analogues of group theorems.
    PhD thesis, King's College, University of London, 1987.
  • xmodN1 K. J. Norrie.
    Actions and automorphisms of crossed modules.
    Bull. Soc. Math. France, 118:129--146, 1990.
  • npbook95 Gabriele Nebe and Wilhelm Plesken.
    Finite rational matrix groups, volume 556 of AMS Memoirs.
    American Mathematical Society, 1995.
  • NP95 Gabriele Nebe and Wilhelm Plesken.
    Finite rational matrix groups of degree 16, pages 74--144.
    Volume 556 of AMS Memoirs\/ npbook95, 1995.
  • NPP84 Joachim Neubüser, Herbert Pahlings, and Wilhelm Plesken.
    CAS; design and use of a system for the handling of characters of finite groups.
    In Atkinson durham82, pages 195--247.
  • NPW81 Joachim Neubüser, Wilhelm Plesken, and Hans Wondratschek.
    An emendatory discursion on defining crystal systems.
    Match, 10:77--96, 1981.
  • OBr90 Eamonn A. O\accent19Brien.
    The p-group generation algorithm.
    J. Symbolic Computation, 9:677--698, 1990.
  • OBr91 Eamonn A. O\accent19Brien.
    The groups of order 256.
    J. Algebra, 142, 1991.
  • OBr94 Eamonn A. O\accent19Brien.
    Isomorphism testing for p-groups.
    J. Symbolic Computation, 17 (1):133--147, 1994.
  • OBr95 Eamonn A. O\accent19Brien.
    Computing automorphism groups of p-groups.
    In Wieb Bosma and Alf van der Poorten, editors, Computational Algebra Number and Number Theory, pages 83--90. (Sydney, 1992), Kluwer Academic Publishers, Dordrecht, 1995.
  • Ost86 Thomas Ostermann.
    Charaktertafeln von Sylownormalisatoren sporadischer einfacher Gruppen.
    Vorlesungen aus dem Fachbereich Mathematik 14, Universität Essen, Essen, Germany, 1986.
  • Pue98 M. Püschel.
    Konstruktive Darstellungstheorie und Algorithmengenerierung.
    PhD thesis, Universität Karlsruhe, 1998.
  • Pah93 Herbert Pahlings.
    On the Möbius function of a finite group.
    Arch. Math., 60:7--14, 1993.
  • Paris01 L. Paris.
    Artin monoids inject in their groups.
    Comment. Math. Helv., 77:609--637, 2002.
  • Pfe94b G. Pfeiffer.
    Young characters on Coxeter basis elements of Iwahori-Hecke algebras and a Murnaghan-Nakayama formula.
    J. Algebra, 168:525--535, 1994.
  • Pfe96 G. Pfeiffer.
    Character values of Iwahori-Hecke algebras of type B.
    In Cabanes Luminy94.
  • Pil83 Günter Pilz.
    Near-Rings, volume 23 of North-Holland Mathematics Studies.
    North-Holland Publishing Company, 1983.
  • Ple85 Wilhelm Plesken.
    Finite unimodular groups of prime degree and circulants.
    J. Algebra, 97:286--312, 1985.
  • Ple90 Wilhelm Plesken.
    Additive decompositions of positive integral quadratic forms.
    The paper is available at Lehrstuhl B für Mathematik, Rheinisch Westfälische Technische Hochschule Aachen, may be it will be published in the near future, 1990.
  • PN95 Wilhelm Plesken and Gabriele Nebe.
    Finite rational matrix groups, pages 1--73.
    Volume 556 of AMS Memoirs\/ npbook95, 1995.
  • Poh87 Michael Pohst.
    A modification of the lll reduction algorithm.
    J. Symbolic Computation, 4:123--127, 1987.
  • PP77 Wilhelm Plesken and Michael Pohst.
    On maximal finite irreducible subgroups of gl(n,z). I. the five and seven dimensional cases, II. the six dimensional case.
    Math. Comput., 31:536--576, 1977.
  • PP80 Wilhelm Plesken and Michael Pohst.
    On maximal finite irreducible subgroups of gl(n,z). III. the nine dimensional case, IV. remarks on even dimensions with application to n = 8, V. the eight dimensional case and a complete description of dimensions less than ten.
    Math. Comput., 34:245--301, 1980.
  • Rad68 Charles M. Rader.
    Discrete fourier transforms when the number of data samples is prime.
    Proceedings of the IEEE, 56:1107--1108, 1968.
  • Ram91 A. Ram.
    A Frobenius formula for the characters of the Hecke algebras.
    Invent. Math., 106:461--488, 1991.
  • rich82 R. W. Richardson.
    Conjugacy classes of involutions in Coxeter groups.
    Bull. Aust. Math. Soc., 26:1--15, 1982.
  • Rin93 Michael Ringe.
    The C MeatAxe, Release 1.5.
    Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1993.
  • Rob88 Edmund F. Robertson.
    Tietze transformations with weighted substring search.
    J. Symbolic Computation, 6:59--64, 1988.
  • Roy87 Gordon F. Royle.
    The transitive groups of degree twelve.
    J. Symbolic Computation, pages 255--268, 1987.
  • Sch90 Gerhard J. A. Schneider.
    Dixon's character table algorithm revisited.
    J. Symbolic Computation, 9:601--606, 1990.
  • Sho92 Mark W. Short.
    The Primitive Soluble Permutation Groups of Degree less than 256, volume 1519 of Lecture Notes in Math.
    Springer, Berlin and Heidelberg, 1992.
  • Sim70 Charles C. Sims.
    Computational methods in the study of permutation groups.
    In John Leech, editor, Computational Problems in Abstract Algebra, Proc. Conf. Oxford, 1967, pages 169--183. Pergamon Press, Oxford, 1970.
  • Sims94 C.C. Sims.
    Computation with Finitely Presented Groups.
    Cambridge University Press, 1994.
  • Soi91 Leonard H. Soicher.
    GRAPE: a system for computing with graphs and groups.
    In L. Finkelstein and B. Kantor, editors, Proceedings of the 1991 DIMACS Workshop on Groups and Computation, volume 11 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 287--291. American Mathematical Society, 1993.
  • Sou94 Bernd Souvignier.
    Irreducible finite integral matrix groups of degree 8 and 10.
    Math. Comput., 63:335--350, 1994.
  • spalt82 N. Spaltenstein.
    Classes unipotentes et sous-groupes de Borel, volume 946 of Lecture notes in Mathematics.
    Springer, Berlin and Heidelberg, 1982.
  • ST54 G. C. Shephard and J. A. Todd.
    Finite unitary reflection groups.
    Canad. J. Math., 6:274--304, 1954.
  • Ste89 J. R. Stembridge.
    On the eigenvalues of representations of reflection groups and wreath products.
    Pacific J. Math., 140:353--396, 1989.
  • tay19 J. Taylor.
    The structure of root data and smooth regular embeddings of reductive groups.
    Proc. Edinb. Math. Soc., 62:523--552, 2019.
  • Hah95 editor Theo Hahn.
    International Tables for Crystallography, Volume A, Space-group Symmetry.
    Kluwer, Dordrecht, 4th edition, 1995.
  • Thi87 Peter Thiemann.
    SOGOS III - Charaktere und Effizienzuntersuchung.
    Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1987.
  • vdW76 Robert W. van der Waall.
    On symplectic primitive modules and monomial groups.
    Indagationes Math., 38:362--375, 1976.
  • Vau84 Michael R. Vaughan-Lee.
    An aspect of the nilpotent quotient algorithm.
    In Atkinson durham82, pages 75--84.
  • Vau90b Michael R. Vaughan-Lee.
    Collection from the left.
    J. Symbolic Computation, 9:725--733, 1990.
  • Vau90a Michael R. Vaughan-Lee.
    The restricted Burnside problem, volume 5 of London Math. Soc. Monographs.
    Clarendon, Oxford, 1990.
  • xmodW2 J. H. C. Whitehead.
    On operators in relative homotopy groups.
    Ann. of Math., 49:610--640, 1948.
  • xmodW1 J. H. C. Whitehead.
    Combinatorial homotopy ii.
    Bull. Amer. Math. Soc., 55:453--496, 1949.
  • Won95 Hans Wondratschek.
    Introduction to space-group symmetry.
    In Hahn Hah95, pages 711--735.
  • Wur93 Martin Wursthorn.
    \sc SISYPHOS Computing in modular group algebras, Version 0.5.
    Math. Inst. B, 3. Lehrstuhl, Universität Stuttgart, 1993.
  • Zum89 Matthias Zumbroich.
    Grundlagen einer Arithmetik in Kreisteilungskörpern und ihre Implementation in CAS.
    Dimplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1989.